Lösung zur Ableitung der Formel

Eingabefunktion
$$\frac{\cos\left(3\,x\right)}{\arctan\left(2\,x\right)}$$

Start der Ableitung
$$\frac{d}{dx}{\left(\frac{\cos\left(3\,x\right)}{\arctan\left(2\,x\right)}\right)}$$
Schritt 1 — Quotientenregel
📖Regel
$$\frac{d}{dx}\left(\frac{u}{v}\right)=\frac{u'v-uv'}{v^{2}}$$
Mit:
  • $u = \cos\left(3\,x\right)$
  • $v = \arctan\left(2\,x\right)$
🧮Aktueller Ausdruck
$$\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(\frac{\cos\left(3\,x\right)}{\arctan\left(2\,x\right)}\right)}\,}}}$$
Nach Quotientenregel
$$\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{\frac{d}{dx}{\left(\cos\left(3\,x\right)\right)}\arctan\left(2\,x\right) - \cos\left(3\,x\right)\frac{d}{dx}{\left(\arctan\left(2\,x\right)\right)}}{\arctan^{2}\left(2\,x\right)}\,}}}$$
Schritt 2 — Ableitung des Kosinus (Kettenregel)
📖Regel
$$\frac{d}{dx}(\cos(u)) = -\sin(u) \cdot u'$$
Mit:
  • $u = 3\,x$
🧮Aktueller Ausdruck
$$\frac{\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(\cos\left(3\,x\right)\right)}\,}}}\arctan\left(2\,x\right) - \cos\left(3\,x\right)\frac{d}{dx}{\left(\arctan\left(2\,x\right)\right)}}{\arctan^{2}\left(2\,x\right)}$$
Nach Ableitung des Kosinus (Kettenregel)
$$\frac{\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,-\sin\left(3\,x\right)\frac{d}{dx}{\left(3\,x\right)}\,}}}\arctan\left(2\,x\right) - \cos\left(3\,x\right)\frac{d}{dx}{\left(\arctan\left(2\,x\right)\right)}}{\arctan^{2}\left(2\,x\right)}$$
Schritt 3 — Faktorregel
📖Regel
$$\frac{d}{dx}(c\,u)=c\,u'$$
Mit:
  • $c = 3$
  • $u = x$
🧮Aktueller Ausdruck
$$\frac{-\sin\left(3\,x\right)\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(3\,x\right)}\,}}}\arctan\left(2\,x\right) - \cos\left(3\,x\right)\frac{d}{dx}{\left(\arctan\left(2\,x\right)\right)}}{\arctan^{2}\left(2\,x\right)}$$
Nach Faktorregel
$$\frac{-\sin\left(3\,x\right) \cdot \bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,3\,\frac{d}{dx}{\left(x\right)}\,}}}\arctan\left(2\,x\right) - \cos\left(3\,x\right)\frac{d}{dx}{\left(\arctan\left(2\,x\right)\right)}}{\arctan^{2}\left(2\,x\right)}$$
Schritt 4 — Ableitung der Variablen
📖Regel
$$\frac{d}{dx}(x)=1$$
🧮Aktueller Ausdruck
$$\frac{-\sin\left(3\,x\right) \cdot 3\,\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(x\right)}\,}}}\arctan\left(2\,x\right) - \cos\left(3\,x\right)\frac{d}{dx}{\left(\arctan\left(2\,x\right)\right)}}{\arctan^{2}\left(2\,x\right)}$$
Nach Ableitung der Variablen
$$\frac{-\sin\left(3\,x\right) \cdot 3 \cdot \bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,1\,}}}\arctan\left(2\,x\right) - \cos\left(3\,x\right)\frac{d}{dx}{\left(\arctan\left(2\,x\right)\right)}}{\arctan^{2}\left(2\,x\right)}$$
🧹Vereinfacht
$$\frac{\bbox[lightgreen, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,-\sin\left(3\,x\right) \cdot 3\,}}}\arctan\left(2\,x\right) - \cos\left(3\,x\right)\frac{d}{dx}{\left(\arctan\left(2\,x\right)\right)}}{\arctan^{2}\left(2\,x\right)}$$
Schritt 5 — Ableitung des Arcustangens
📖Regel
$$\frac{d}{dx}(\arctan(u))=\frac{u'}{1+u^2}$$
Mit:
  • $u = 2\,x$
🧮Aktueller Ausdruck
$$\frac{-\sin\left(3\,x\right) \cdot 3\arctan\left(2\,x\right) - \cos\left(3\,x\right)\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(\arctan\left(2\,x\right)\right)}\,}}}}{\arctan^{2}\left(2\,x\right)}$$
Nach Ableitung des Arcustangens
$$\frac{-\sin\left(3\,x\right) \cdot 3\arctan\left(2\,x\right) - \cos\left(3\,x\right) \cdot \bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{1}{1 + \left(2\,x\right)^{2}}\,\frac{d}{dx}{\left(2\,x\right)}\,}}}}{\arctan^{2}\left(2\,x\right)}$$
Schritt 6 — Faktorregel
📖Regel
$$\frac{d}{dx}(c\,u)=c\,u'$$
Mit:
  • $c = 2$
  • $u = x$
🧮Aktueller Ausdruck
$$\frac{-\sin\left(3\,x\right) \cdot 3\arctan\left(2\,x\right) - \cos\left(3\,x\right) \cdot \frac{1}{1 + \left(2\,x\right)^{2}}\,\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(2\,x\right)}\,}}}}{\arctan^{2}\left(2\,x\right)}$$
Nach Faktorregel
$$\frac{-\sin\left(3\,x\right) \cdot 3\arctan\left(2\,x\right) - \cos\left(3\,x\right) \cdot \frac{1}{1 + \left(2\,x\right)^{2}} \cdot \bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,2\,\frac{d}{dx}{\left(x\right)}\,}}}}{\arctan^{2}\left(2\,x\right)}$$
Schritt 7 — Ableitung der Variablen
📖Regel
$$\frac{d}{dx}(x)=1$$
🧮Aktueller Ausdruck
$$\frac{-\sin\left(3\,x\right) \cdot 3\arctan\left(2\,x\right) - \cos\left(3\,x\right) \cdot \frac{1}{1 + \left(2\,x\right)^{2}} \cdot 2\,\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(x\right)}\,}}}}{\arctan^{2}\left(2\,x\right)}$$
Nach Ableitung der Variablen
$$\frac{-\sin\left(3\,x\right) \cdot 3\arctan\left(2\,x\right) - \cos\left(3\,x\right) \cdot \frac{1}{1 + \left(2\,x\right)^{2}} \cdot 2 \cdot \bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,1\,}}}}{\arctan^{2}\left(2\,x\right)}$$
🧹Vereinfacht
$$\frac{-\sin\left(3\,x\right) \cdot 3\arctan\left(2\,x\right) - \cos\left(3\,x\right) \cdot \bbox[lightgreen, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{1}{1 + \left(2\,x\right)^{2}} \cdot 2\,}}}}{\arctan^{2}\left(2\,x\right)}$$
Ergebnis
$$\frac{-\sin\left(3\,x\right) \cdot 3\arctan\left(2\,x\right) - \cos\left(3\,x\right) \cdot \frac{1}{1 + \left(2\,x\right)^{2}} \cdot 2}{\arctan^{2}\left(2\,x\right)}$$
Direkt berechnet (Maxima)
Ableitung der Eingabefunktion via Maxima:
$$-\frac{3\,\sin\left(3\,x\right)}{\arctan\left(2\,x\right)} - \frac{2\,\cos\left(3\,x\right)}{\left(4\,x^{2} + 1\right)\,\arctan^{2}\left(2\,x\right)}$$

Abgleich Schrittfolge ↔︎ Maxima: gleich (true)