Lösung zur Ableitung der Formel

Eingabefunktion
$$\frac{x^{2}}{x + 1}$$

Start der Ableitung
$$\frac{d}{dx}{\left(\frac{x^{2}}{x + 1}\right)}$$
Schritt 1 — Quotientenregel
📖Regel
$$\frac{d}{dx}\left(\frac{u}{v}\right)=\frac{u'v-uv'}{v^{2}}$$
Mit:
  • $u = x^{2}$
  • $v = x + 1$
🧮Aktueller Ausdruck
$$\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(\frac{x^{2}}{x + 1}\right)}\,}}}$$
Nach Quotientenregel
$$\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{\frac{d}{dx}{\left(x^{2}\right)}\left(x + 1\right) - x^{2}\frac{d}{dx}{\left(x + 1\right)}}{\left(x + 1\right)^{2}}\,}}}$$
Schritt 2 — Potenzregel (Spezialfall)
📖Regel
$$\frac{d}{dx}\left(u^{c}\right)=c\,u^{c-1}$$
Mit:
  • $u = x$
  • $c = 2$
🧮Aktueller Ausdruck
$$\frac{\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(x^{2}\right)}\,}}}\left(x + 1\right) - x^{2}\frac{d}{dx}{\left(x + 1\right)}}{\left(x + 1\right)^{2}}$$
Nach Potenzregel (Spezialfall)
$$\frac{\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,2\,x^{2 - 1}\,}}}\left(x + 1\right) - x^{2}\frac{d}{dx}{\left(x + 1\right)}}{\left(x + 1\right)^{2}}$$
🧹Vereinfacht
$$\frac{\bbox[lightgreen, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,2\,x\,}}}\left(x + 1\right) - x^{2}\frac{d}{dx}{\left(x + 1\right)}}{\left(x + 1\right)^{2}}$$
Schritt 3 — Summen-/Differenzenregel
📖Regel
$$\frac{d}{dx}(u \pm v \pm \dots) = \frac{d}{dx}(u) \pm \frac{d}{dx}(v) \pm \dots$$
Mit:
  • $u = x$
  • $v = 1$
🧮Aktueller Ausdruck
$$\frac{2\,x\left(x + 1\right) - x^{2}\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(x + 1\right)}\,}}}}{\left(x + 1\right)^{2}}$$
Nach Summen-/Differenzenregel
$$\frac{2\,x\left(x + 1\right) - x^{2} \cdot \left(\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(x\right)} + \frac{d}{dx}{\left(1\right)}\,}}}\right)}{\left(x + 1\right)^{2}}$$
Schritt 4 — Ableitung der Variablen
📖Regel
$$\frac{d}{dx}(x)=1$$
🧮Aktueller Ausdruck
$$\frac{2\,x\left(x + 1\right) - x^{2} \cdot \left(\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(x\right)}\,}}} + \frac{d}{dx}{\left(1\right)}\right)}{\left(x + 1\right)^{2}}$$
Nach Ableitung der Variablen
$$\frac{2\,x\left(x + 1\right) - x^{2} \cdot \left(\bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,1\,}}} + \frac{d}{dx}{\left(1\right)}\right)}{\left(x + 1\right)^{2}}$$
Schritt 5 — Konstantenregel
📖Regel
$$\frac{d}{dx}(c)=0$$
Mit:
  • $c = 1$
🧮Aktueller Ausdruck
$$\frac{2\,x\left(x + 1\right) - x^{2} \cdot \left(1 + \bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,\frac{d}{dx}{\left(1\right)}\,}}}\right)}{\left(x + 1\right)^{2}}$$
Nach Konstantenregel
$$\frac{2\,x\left(x + 1\right) - x^{2} \cdot \left(1 + \bbox[yellow, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,0\,}}}\right)}{\left(x + 1\right)^{2}}$$
🧹Vereinfacht
$$\frac{2\,x\left(x + 1\right) - \bbox[lightgreen, padding:0.12em 0.22em]{{\color{black}{\vphantom{\dfrac{d}{dx}}\,x^{2}\,}}}}{\left(x + 1\right)^{2}}$$
Ergebnis
$$\frac{2\,x\left(x + 1\right) - x^{2}}{\left(x + 1\right)^{2}}$$
Direkt berechnet (Maxima)
Ableitung der Eingabefunktion via Maxima:
$$\frac{2\,x}{x + 1} - \frac{x^{2}}{\left(x + 1\right)^{2}}$$

Abgleich Schrittfolge ↔︎ Maxima: gleich (true)